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Uncertainty concerning uncertainties reported by various investigators for counting experiments sometimes makes it difficy
assess the real meaning of experimental results, such as radiocarbon ages. Utilization of the maximum variance rule, which"ak&
into account knowledge of counting error, has a major advantage in avoiding excessively small confidence intervals, hnt it le
biased variance estimates and overly conservative confidence intervals. An assessment is given of the strengths and weaknesge of
four alternatives, one of which “the variance weighted ¢” is asymptotically correct (negligible Poisson error) and is parti
attractive when Poisson error is dominant. Extension to the case where Poisson error is not the dominant, known random By

component, shows that the methods presented can be generalized for non-counting experiments.

1. Introduction

Reporting of scientific results always entails two
essential quantities: 1) an estimate of the underlying
quantity, whether it be a length or a (radiocarbon)
date, and 2) the uncertainty for that estimate. Uncer-
tainty estimation can be an extremely difficult task,
especially if reliable bounds for uncompensated sys-
tematic error are considered. Meaningful bounds for
the random error component of the measurement pro-
cess, however, can present a challenge; and one of the
greatest problems is that different researchers com-
monly employ different prescriptions — sometimes
unstated — for the random component of uncertainty.
The purpose of this exposition is to examine the merits
and pitfalls of some current and potential “random”
uncertainty estimation practices for “counting” experi-
ments. Issues involving systematic error will not be
treated here.

For simple counting experiments, an ancient prac-
tice has been to assume Poisson counting statistics, or
“shot noise”, for the estimation of the standard devia-
tion o, and to construct confidence intervals with sym-
metric limits given by x + U, where the uncertainty
U=zo, x equals the measured value and z, the stand-

* Tel.+1 301 975 3919, fax+1 301 216 1134, e-mail
currie@enbh.nist.gov.

¥ Contribution of the National Institute of Standards and
Technology; not subject to copyright.

Elsevier Science B.V.
SSDI 0168-583X(94)00124-E

ard normal variate #1. The corresponding intervals yijjj
be optimal if there are no other random error comge.
nents (H,, “null hypothesis”), but overly optimistic
(too short) if there are additional non-Poisson compo:
nents (H,, “alternative hypothesis™). For the vast ma-
jority of measurements in the physical sciences, hmns
are estimated using U = s, where ¢ is Student’s-t and
s, the square root of the estimated variance, s2. Values:
of ¢ are selected to achieve a confidence level
based on v degrees of freedom (df). For simple replica:
tion, where x and s are computed as the mean and
standard error (standard uncertainty) of k observa-
tions, » =k — 1. These intervals will give the correct
coverage (confidence level), but they are more disperst
and generally wider than those based strictly on count
ing statistics — an unfortunate result if the null hy-
pothesis (Poisson counting error only) happens to be
true. For accelerator mass spectrometry (AMS), it has
become common for some laboratories to use a maxi-
mum variance technique that takes the standard devia-

“tion as the larger of o (Poisson) or s (replication) [2]

This provides important protection if the null hypothe:
sis is not true, but the resulting confidence intervalt
[using max(co,s)] will be overly conservative, especially
if Hy is true and degrees of freedom are few. If
represents an exquisite example, however, of utilizing

#1 Use of “z” assumes that the expected number of counts if
large enough that the Poisson distribution is approximatel)
normal. Note that “U” is known as the “expanded uncer:
tainty” [1]; it is equivalent to the half-width of the symmet:
ric confidence interval.




L.A. Currie / Nucl. Instr. and Meth. in Phys. Res. B 92 (1994) 188-193 189

Kmowledge of the measurement process for improved

estimation- . .
In the following text we shall use a distribution

sampling technique of n=1000 x’s and s’s to present
avisual comparison of the performance of the above

ee rules for (random) uncertainty estimation; also,
we shall introduce a fourth rule that appears to offer
even better performance under a variety of circum-

stances-

4. Objectives, issues, and alternative uncertainty rules
2

“The objective is simple: to assess experimentally
(computationally) the strengths and weaknesses of al-
ternative rules for estimating (random) uncertainty for
counting experiments, such as those involving radioac-
tive decay or ion counting mass spectrometry. To ac-
complish this, the first step is to identify the perfor-
mance issues, or ‘“‘quality measures” to characterize
uncertainty rule performance. Since all rules include
some sort of variance (or standard deviation) estimate
and some sort of “confidence” interval, we have se-
‘Jected the following: '

- bias of the estimated variance [o2]

- “coverage”, i.e. the actual confidence level achieved

- “exposure”, i.e. the worst case normalized deviation
from the truth: max(deviation /o-estimate)

- relative size and dispersion of the confidence inter-
vals

The first issue is what motivated this investigation,
because the maximum variance method, popular among
AMS laboratories, must give a positively biased vari-
ance estimate (in the long run) in the null case, be-
cause the distribution of estimates includes the long
tail of 5%, but the short tail is cut off at o2 (the Poisson
variance). Put differently, s will exceed o, about half
the time, vet no values smaller than a, are allowed.
This implies also that, for the null case, reported
Incertainties will be overconservative. (In fact, they
¥ill be doubly overconservative, because of the use of
itudent’s ¢.)

The uncertainty reporting rules examined are listed
n Table 1. The fourth, “variance weighted-t” rule is
acluded as an attempt to capture the scientific knowl-
‘dge encompassed in Rule 3 (¢ can never be smaller
han the Poisson-o'), and at the same time temper its
pusitive bias and overconservatism. This rule was in-
ipire.d by a statistical method proposed for estimating
confidence intervalg involving multiple variance com-
Ponents [3], and it has been examined as a means for
?“c‘{TPOrating variance inequality constraints into de-
Iectlo.n and uncertainty estimation for physical and
cl“’{Illcal counting experiments [4]. Certain limiting be-
haviors for the various rules are evident: 1) Assuming
Rormally distributed random errors, Rule 2 is always

Table 1
Confidence interval rules ? [when mixed counting and non-
counting errors]

Rule 1:  Assume Poisson — o only; CI = x + z0y

Rule 2:  Use replication — s only; CI = x + 15

Rule 3:  Use both, according to s” = max(oy,s);
then Cl = x + zoy when s < oy, or x + s when
§> 0

Rule 4:  Use a variance-weighted ¢’ in connection with
ty=2(cf/sD)+ 11— 0 /sD)

[The second term accounts for non-counting error variance,

which can never be negative.]

* When counting error does not dominate, but an internal o;
can be reliably computed, substitute o, for oy in the above
expressions.

unbiased, and coverage is as expected. 2) For the null
case (Poisson error only), Rule 1 is unbiased and it
gives the correct coverage; also it produces the shortest

.average confidence intervals. For all other cases, use of

Rule 1 gives both variance estimates and confidence
intervals that are too small. 3) When the Poisson error
componcnt is negligible, Rules 3 and 4 are asymproti-
cally the same as Rule 2, i.e. they give unbiased vari-
ance estimates and correct coverage. 4) Differences
among the rules are moot when degrees of freedom
(df) are large, for then ¢ —z and 52— o2 5) Rules 3
and 4 have the special advantage of limiting “exposure”
(large deviation/g-estimate) that is associated with the
short tail of the 2 distribution. Unfortunately, most
counting experiments fall in a middle ground where
non-Poisson error, which may be undetectable, is pre-
sent; Rule 1 is then wrong, and Rules 3 and 4 are
biased.

2.1. Example

To illustrate the results of applying the four rules to
real AMS data, we borrow data from ref. [5], where
k =9 replicate counts were made on a target prepared
from *C reference material HOxIT (SRM 4990C). The
ratio of the average for HOxII to the HOxI standard
(SRM 4990B) was 1.355 with a replication standard
error of 0.00312, and a Poisson standard error of
0.00256 corresponding to a total of 280 thousand
counts. The ratio (s /o) is thus 1.22, so the four rules
yield the following uncertainties:

Rule 1: 1 (1.96)(0.00256) — 0.0050
Rules 2 and 3:+(2.306)(0.00312) = 0.0072
Rule 4: +(2.073)(0.00312) = 0.0065.

The critical value for (s /o) for the detection of “excess
variance” (o2, non-Poisson variance) for 8 df (5%
significance level) is 1.39, so excess variance has not
been detected. The detection limit for (o, /o) is 2.16,

II. AMS TECHNIQUES
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while there is a 50% chance of detecting a ratio as
small as 0.97 [6]. The several uncertainty estimates,
differing by as much as 44%, typify the different levels
of conservatism built into the rules and force the
question as to which rule should be used. Had (s /o)
been less than 1, then Rules 1, 3, and 4 would have
given the same result, and Rule 2 would have given a
shorter interval. With smaller df, the differences are
larger still. In fact, at higher levels of the replication
tree (among targets, among laboratories, etc.) where
one has a better chance of assessing accuracy in con-
trast to precision, small dfs are the rule. For this
reason, the performance evaluation that follows was
made with df = 4, i.e. 5 internal replicates.

3. Performance evaluation.

To set the stage for judging performance it is useful
to view random deviations from the perspective of the
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different rules. Fig, 1a shows a 5% sample from’moﬁ
normal random deviates (D) with zero mean and Unxt
variance. Error bars represent +o,. Fig. 1b shows thi’
same deviations, but with error bars +s derived frog
5% sample of 1000 sets of replicates having 4 df eéch,
Fig. 1c is similar to 1b but with the deviations ordees
according to s. Fig. 1d is the same as 1c, except that
smaller than o, are replaced with that quantity (R;
3). It is clear in Fig. 1a that Rule 1 yields an unbiaggy
variance estimate and uniform width confidence in
vals. Rule 2 applied to Fig. 1b or 1c also yields 33
unbiased variance estimate, but confidence intery
widths are quite diverse. Unlike Rule 1 (Fig. 12), Ryj
2 shows occasional large “misses” (exposure) wher
Abs(D/s)> 1. For Rule 3 (Fig. 1d) the lack of by]
ance between large and small s’s leads to a positiveiv
biased variance estimate as well as overly conservéiife
confidence intervals. On the other hand, exposnreii
controlled since s' cannot be smaller than oy. [Rule4
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Fig. 1. Normal random deviates, 5% samples from 1000 simulations N(0,1). (a) Random order, 1o error bars; (b) random order; 1S
error bars (4 df); (c) similar to (b), ordered by s; (d) with Rule 3 (s > o) applied.



L.A. Currie / Nucl. Instr. and Meth. in Phys. Res. B 92 (1994) 188-193 191

s similar 10 Rule 3 (Fig. 1d) except that the transition
]{smm - to ¢ is more gradual]
31 Variance bias

Bias is assessed by the direct computation of the
\ariance from the 1000 replicates for the currently
psed rules and the null and alternative hypotheses,
where Hj includes an extra variance component equal
10 the Poisson component, i.c. o2 =gZ. For the 1000
simulations, the average ratios (+standard errors) of
estimated to true variances are

Ratio, Ratio, Ratio,

Rule 1 Rule? Rule 3
H: count error 1.000  1.000+0.023 1.292+0.018 #2
H,: added error 0.500  1.0004+0.023 1.083+0.022

1t is clear that Rule 1 performs badly (negative bias)
when added random error is present, just as Rule 3
vields large positive bias when it is not. Rule 2 always
vields unbiased variance estimates.

3.2. Coverage

Coverage refers to the probability that the confi-
dence intervals (CI) will “cover” the true mean value.
If the CI rule is overly optimistic, coverage will be
smaller than the target confidence level; the converse

#2 An exact result for the Rule 3 (H,) variance bias, courtesy
of Mark Vangel and Keith Eberhardt (Statistical Engi-
neering Division, NIST), for 4 df is 1 +2e~2 = 1.271.

is true if it is overly conservative. In this respect, the
performance of the first three rules mirrors that ob-
tained with the variance. The actual coverage for the
set of 1000 CIs for Rule 2 was equal to the presumed
level of 95% in both cases (H,, H,). For the null case
Rule 1 also gave the correct coverage. Further insights
into the validitv of CIs and exposure are best illus-
trated by viewing cumulative distributions, as in Fig. 2.
The only one of these rules that misses for A, is Rule
3. Fig. 2a shows the distribution of uncertainty normal-
ized deviations for this case, and it is seen that the
corresponding confidence intervals are too large, pro-
ducing a coverage of 97% instead of the target 95%.
(For H,, Rule 3 gave a coverage of 94%.) Fig. 2b
shows that Rule 1 errs seriously in the opposite direc-
tion (coverage = 84%) when additional random error is
present (H,). Fig. 2¢ is included to show that Rule 2
leads to correct coverage, but exposure is severe, with
the extreme absolute deviations (D) greater than twice
the 95% uncertainties (U). Recognizing that for 4 df,
U=2.77 s, we find the most serious “misses” for the
100U samples have D= +7/.22 s and —6.11 s. Direct
integration of the ¢-distribution shows that on the
average one should expect a miss +7.17 s or more by
chance for every 1000 samples! From the perspective
of a large throughput of radiocarbon dates, say 2000-
3000 per year, this would mean that with an s =100
years, for example, by chance a few dates could be in
crror by as much as + 700 vcars. Rules 3 and 4 would
prevent this except when the non-Poisson errors domi-
nate, in which case Rules 3 and 4 are asymptotically
the same as Rule 2.
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Fig. 2. Actual coverage of presumed 95% confidence intervals. (a)

Deviation / 95 % Uncertainty
( Actual Coverage : 84 % )

b.

(c) alternative case, Rule 2.
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C.

Null case (o = g3), Rule 3; (b) alternative case (o > o), Rule 1;

11. AMS TECHNIQUES
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Fig. 3. Distributions of uncertainties, which represent confi-

dence interval half-widths (null case; 4 df, 95% confidence

level (CL); m = median). The scale at the left (95% uncer-

tainty /o) is perfectly general; the right ordinate is given for
o = 80 radiocarbon years.

3.3. Distributions of intervals

The final performance measure to be considered is
the typical size and distribution of confidence intervals.
This issue, which is most serious for the null case, is
addressed graphically in Fig. 3. Metrics for the distri-
butions are given in units of o, on the left ordinate,
and Radiocarbon years on the right, taking o, as 80
years (1% o for modern material). For Rule 1, there is
no distribution; the 95% uncertainty is fixed at 1.96 o,
or 157 years. This is the best possible choice, if addi-
tional variance is known to be absent. Rule 2 is the
worst choice; its 95% expanded uncertainties range
from 27 to 522 years for the 1000 simulations. (Exact
values computed from the F distribution are 33.4 and
477 years, respectively.) The central portion (inter-
quartile range) extends from 159 to 261 years. Rule 3
eliminates the lower tail, such that the smallest inter-
val, as well as the median, is the same as for Rule 1,
157 years. Rule 4, introduced in this study, is the best
compromise, its median interval again equals that of
Rule 1, but its central range is only half the size of that
of Rule 3, with its upper quartile at 205 years.

4, Extension

When prior experience or theoretical knowlng@m
the measurement process indicates important 1o
Poisson random error components, then o, should
replaced in Table 1 by a combined o that includes:
known random error components. This quantity; fz
beled “internal error” (o;) by some AMS laboratonit
[7], then serves as the base value or minimum pogg;
o. Rule 3, for example, then becomes: s = max(
This formulation still applies in the limit of negligj
Poisson error. Hence, using the o; extension, we:f;
that the treatment investigated here is perfectly’ gens
eral, not limited to counting experiments.

5. Conclusion

Application of the alternative rules will lead:it:
diverse and somctimes biased uncertainty estimate
based on the same experimental data from decay, a
accelerator counting experiments. The most serioy
differences arise with small degrees of freedom ang
large confidence levels. For non-counting experiments
lacking a prior or theoretical “internal” o, there i
little choice but to use the classic Rule 2, involving
Student’s-z. For AMS and decay counting, we conclude:
that '
— Rule 1 is unquestionably the best if there is negngr

ble non-counting (or other non-internal) error; oth:

erwise it produces low estimates of imprecision and
poor (confidence interval) coverage. The problem is
knowing that Poisson (or internal) error dominates

— Rule 2 is always unbiased, but it yields an extremel
wide range of uncertainty estimates. For four dé
grees of freedom, the (95%) range of s’s and henc
uncertainties ‘spans nearly a factor of five. High
throughput laboratories must face the likelihood that
deviations will exceed =+ 7s.

- Rule 3 gives maximum bias for the null hypothesisy
since even then there is almost an even chance tha
s will exceed 0. The small s’s that counter thi§
excess (in Rule 2) are automatically excluded. Th
use of physical knowledge (that o cannot be smallq
than o,. or ;) is a major advantage, however, I
suppressing the small s’s and wide “misses” @
Rule 2.

- As shown in the final, multi-box plot of uncertainticz
(Fig. 3), Rule 4 shows promisc o reduce signifiy
cantly the dispersion of uncertainty estimates com:
pared to Rule 3, while still providing protection
against unanticipated sources of random error.

In many respects, performance in the region th?{"(
Poisson error dominates is most important, if there 1
concern about the efficient use of counting time, and
once large external errors are brought under contro!
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